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Fig. 3. Comparison of the analytic and computer simulated transient re- 
sponses for three different gate voltage falling rates. The parameters for Figs. 
3 and 4 are Vs=O, CL=2 pF, V,=O.60 u, W=4 pm, L=3.3 pm, 
L, = 0.35 pm, and fl= 30.3 pA.V-*. 
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Fig. 4. Comparison of the analytic and computer simulated results of the 
error voltage as a function of the gate voltage falling rate. 

III. COMPARISON WITH COMPUTER SIMULATION 

To validate the model, compute simulations using the SPICE 
2G [6], [7] circuit-simulation program have been performed. The 
circuit configuration for computer simulations is the same as that 
of Fig. 1. 

The analytical transient response, (6), and computer simulated 
results for three different gate voltage falling rates 0.1 V/ns, 0.2 
V/ns, and 0.5 V/ns are shown in Fig. 3. The close agreement 
between the analytical analysis and the computer simulation is 
evident. Another comparison is shown in Fig. 4. The error voltage 
is plotted against the gate voltage falling rate for both the 
analytical and simulation results. Fig. 5 shows the measured data 
and calculated result from the analytical model (8). Good agree- 
ment is found. 

IV. CONCLUSION 

An analytical expression for the switch-induced error voltage 
on a switched capacitor is presented. Computer simulation and 
experiment justify the validity of the analysis. The compact 
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Fig. 5. Measured and calculated error voltages as functions of gate voltage 
falling rate. The parameters are Vs = 0, C, = 24.5 pF, effective COt = 195 fF 
(including parasitic probe capacitance), Vro = 07OV, W=4Dpm, L=5.1 
pm, L, = 0.45 pm, t, = 85 nm, and fl= 295 pA.V-s. 

expression (8) should be convenient in the analysis of switched- 
capacitor circuits, such as A/D, D/A converters, and filters. 
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Transition to Chaos in a Simple Nonlinear Circuit 
Driven by a Sinusoidal Voltage Source 

ABDENNASSER AZZOUZ, RAYMOND DUHR, AND 
MARTIN HASLER 

AMruct-A circuit composed of a sinusoidal voltage source, a linear 
resistor, a linear inductor, and a diode in series is investigated. Sub- 
harmonic solutions of various orders have been found by computer simula- 
tions and there is evidence for the presence of chaotic solutions. The diode 
model used involves a nonlinear capacitor. The transition to chaos follows 
the same pattern as for iterated maps on an interval. 
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I. INTR~DuC~~N 

In [l], [2], laboratory measurements on the circuit of Fig. 1 
have been reported which indicate the presence of chaotic solu- 
tions. This came as a surprise, because the educated electronics 
engineer expects a periodic steady state with the same period 
T = 2 rr/o as the voltage source. Such a “normal” behavior turns 
out to be present as long as the source amplitude Va is sufficiently 
small. When V0 reaches a certain value E,, the period of the 
steady state doubles and thus for Va just above E, the steady 
state is a l/2 subharmonic. Such a phenomenon is called a 
bifurcation. When V, is further increased, a whole sequence Ek of 
period-doubling bifurcations has been observed, leading to l/4-, 
l/8-, l/16-, . . . subharmonics. The Ek appear to converge to a 
value E,. Above E, no steady state is observed anymore, the 
solutions are chaotic, except for some small intervals, called 
windows, where period doubling occurs again, but starting from a 
l/3-subharmonic, or a 1/5subharmonic, etc. 

The diode used in [l], [2] was a varactor, which has a large 
nonlinear reverse-bias junction capacitance. It has been pointed 
out in [3] that a common junction diode causes the same phenom- 
ena and that the crucial effect is the transit time of the junction. 
In any case, it is clear that without some parasitic effect of the 
diode there would neither be subharmonic nor chaotic solutions 
[41. 

The experimentally observed qualitative behaviour of the solu- 
tions show a close resemblance with the behaviour of point 
sequences generated by iterated noninvertible maps on an inter- 
val of the real line, for which a rigorous mathematical theory 
exists [5]. By modeling the transit time of the diode by a sharp 
delay, the two phenomena have been related in [6]. 

From a circuit-theoretic point of view, a sharp delay is not 
satisfactory. Rather, the transit time should be modelled by a 
nonlinear capacitor. The purpose of this letter is to give evidence 
that such a model is capable of reproducing the same phenom- 
ena. This evidence is produced by computer simulations. 

II. COMPUTER SIMULATIONS 

We have computed time-domain solutions of the circuit of Fig. 
1 by SPICE2. SPICE uses the model of Fig. 2 for the diode, 
where the nonlinear resistor has the constitutive relation 

i,=l;(exp(u/nvr.)-1) (1) 
the nonlinear capacitor that models the reverse bias junction 
capacitance is defined by 

~~=c;~~~(l-(l-u/Cg)~~‘“)/(1-~) foru<@ 

q*=c;o.@/(l-“) for u > Qi (2) 

and the nonlinear capacitor that models the transit time by 

q3=TZs (exp(u/nVr)-1). (3) 
We have chosen the following values for the parameters: 

1,=8.3X10-“A, r,=9.63, n=l, ~=4XlO-~s, 
c+ = 300 pF, m = 0.4, @ = 0.75 V. 

They model a varactor diode. 
We have computed i(t) for a large number of different source 

amplitudes Va. The results are reported in Fig. 3. Above each 
value of V0 on the horizontal axis, the 30 values i( n * T) for 
n =1000,1001; . f) 1029 are reported. We start with n =lOOO 
rather than n = 1 in order to leave sufficient time for the solution 
to reach its steady state, if there is any. If the steady state is 
periodic with period T, then the 30 points i(n * T) are identical. 
This is the case for V, < 0.84 V in Fig. 3. If the steady state is 

Fig. 1. Series circuit with diode. 

Fig. 2. SPICE model for the diode. 
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Fig. 3. Bifurcation diagram for the current. 

periodic with period 2* T, then two sets of 15 identical points 
i( n * T) are obtained, which is the case for 0.84 V < V0 < 1.71 V. 
Hence at Va = 0.84 V the graph of Fig. 3 bifurcates. 

The period doubling bifurcations are clearly visible in Fig. 3 up 
to the l/16-subharmonic. Later on, all points i( II * T) are dis- 
tinct. This means that either the steady state has not yet been 
reached or the steady state has a period longer then 29* T, or 
there is no periodic steady state at all. The similarity with the 
bifurcation diagrams of [5] suggests the presence of chaotic 
solutions. A window with l/3-, l/6-, l/12-, . . . subharmonics is 
visible within the chaos. 

III. CONCLUSION 

We have found by computer simulation a period-doubling 
route to chaos, as well as windows within the chaos, for the 
circuit of Fig. 1. 

The diode model involves a nonlinear capacitor rather than a 
sharp delay. 
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